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ABSTRACT

A new theorem-proving program, combining the use of nonclausal resolution and connection
graphs, is described. The use of nonclausal resolution as the inference system eliminates some
of the redundancy and unreadability of clause-based systems. The use of a connection graph

restricts the search space and facilitates graph searching for efficient deduction.

I INTRODUCTION

This paper describes some of the theory and features of a nonclausal connection-graph
resolution theorem-proving program being developed as a reasoning component of a natural-

language-understanding system.
The most important characteristics of the program are

e Nonclausal resolution is used as the inference system, eliminating some of the redun-

dancy and upreadability of clause-based systems.

¢ A connection graph is used to represent permitted resolution operations, restricting the

search space and facilitating the use of graph searching for efficient deduction.
e Heuristic search and special logical connectives are used for program control.

The following sections will describe these aspects of the program, citing disadvantages
and difficulties as well as advantages, and will be followed by a description of the implementa-

tion status of the program and future plans for it.

I NONCLAUSAL RESOLUTION

One of the most widely criticized aspects of resolution theorem proving is its use of

clause form for wifs. The principal criticisms are

e Conversion of a wff to clause form may eliminate pragmatically useful information
encoded in the choice of logical connectives (e.g., =P V Q may suggest case analysis

while the logically equivalent P O @ may suggest chaining).



e Use of ¢lause form may result in a large number of clauses being needed to represent a

wif, as well as in substantial redundancy in the resolution search space.
e Clause form is difficult to read and not human-oriented.

The clausal resolution rule can be easily extended to general quantifier-free wifs [12,8].
Proofs of soundness and completeness are in [12]. Where clausal resolution resolves on clauses
containing complementary literals, nonclausal resolution resolves on general quantifier-free
wifs containing atomic wifs (atoms) occurring with opposite pelarity, which is determined by
the parity of the number of explicit or implicit negations in whose scope the atom appears
(positive polarity if even, negative polarity if odd). In clausal resolution, resolved-on literals
are deleted and remaining literals disjoined to fo-rm the resolvent. In nonclausal resolution, all
occurrences of the resolved-on atom are replaced by F=false (T=true) in the wiff in which
it occurs positively (negatively). The resulting wffs are disjoined and simplified by truth-
functional reductions that eliminate embedded occurrences of T and F and optionally perform

simplifications such as A A-A —F,

Definition 1. If £ and 8 are ground wffs and C is an atom occurring positively in £ and
negatively in 8, then the result of simplifying A(C « F)V 8(C «— T), where X(Y¥ +— Z)1is the
result of replacing every occurrence of ¥ in X by Z, is a ground nonclausal resolvent of 4 and

8. :

It is clear that nonclausal resolution reduces to clausal resolution when the wis are
restricted to be clauses. In the general case, however, nonclausal resolution has some novel
characteristics as compared with clausal resolution. It is possible to derive more than one
resolvent from the same pair of wils, even resolving on the same atom, if the atom occurs both
positively and negatively in both wifs (e.g., atoms within the scope of an equivalence occur

both positively and negatively). Likewise, it is possible to resolve a wif against itself.

The ground nonclausal resolution rule can be lifted to nonground wffs by renaming
parent wils apart and unifying sets of atoms from each parent, one atom of each set occurring
positively in the first wil and negatively in the second. As with clausal resolution, only

single atoms need be resolved upon if the resolution operation is augmented by a factorization



operation that derives a new wil by instantiating a wil by a most general unifier of two or more

distinct atoms occurring in the wi (regardless of polarity).

A nonclausal resolution derivation of F' from a set of wffs demonstrates the unsatisfiability
of the set of wis. Nonclausal resolution is thus, like clausal resolution, a refutation procedure.
Variants of the procedure that attempt to affirm rather than refute a wif are possible (e.g., see

the variety of resolution rules in [8]), but are isomorphic to this procedure.

Although clause form is often criticized, use of nonclausal form has the disadvantage
that most operations on nonclausal form are more complex than the same operations on clause
form. The result of a nonclausal resolution operation is less predictable than the result of a
clausal resolution operation. Clauses can be represented as lists of literals; sublists are appended
to form the resolvent. Pointers can be used to share lists of literals between parent and resolvent
|5]. With many simplifications such as A AT — 4 and A A ~4 — F being applied during the
formation of a nonclausal resolvent, the appearance of a resolvent may differ substantially from

its parents, making structure sharing more difficult.

For most forms of clausal resolution, an atom does not occur more than once in a
clause. In nonclausal resolution, an atom may occur any number of times, with possibly differing
polarity. In clausal resolution, every literal in the clause must be resolved upon for the clause
to participa.t.e in a refutation. Thus if a clause contains a literal that is pure (cannot be resolved
with a literal in any other clause), the clause can be deleted. This is not the case with noﬁclausal
resolution; not all atom occurrences are essential in the sense that they must be resolved upon
to participate in a refutation. For example, { P A @,~Q } is a minimally inconsistent set of
wiis, one of which contains‘the pure atom P. A more complicated definition of purity involving
this notion of essential occurrences must be used. The subsumption operation must also be
redefined for nonclausal resolution to take account of such facts as the subsumption of 4 by

A A 8 as well as the clausal subsumption of 4V 8 by 4.

[12,8] suggest the extension of nonclausal resolution to resolving on nonatomic subwils
of pairs of wifs. For example, PV @ and (PV @) D R could be resolved to obtain R. Resolving

on nonatoms often permits significantly shorter and more readable refutations. However, there
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are several reasons for not doing this:

e [t may be difficult to recognize complementary wffs. For example, PV @ occurs positively
in @VRVPand -PDQ.

e The effect of resolving a pair of wils on nonatomic subwils can be achieved by multiple
resolution operations on atoms. Resolution on both atomic and nonatomic subwfls could

result in redundant derivations.

e A connection-graph procedure would be complicated by the need to attach links to
logical subwfls (e.g., PVQ in QVRVP) and link inheritance would be further complicated
since subwfls of a resolvent may have no parent subwfls (e.g., when PV @ and ~PV R
are resolved, the resolvent @ V R is a subwf of neither parent). Similar complications

arise if equality inferences are used that introduce new structure into the result.

Although the nonclausal resolution rule in general seems adequate as compared with
the above proposed extension to matching on nonatomic subwffs, the handling of the‘ equivalence
relation in [12] is inadequate. In resolving P = @ and (P A R)V (-P A S), it is possible to
derive @.V § and ~Q V R, but not the more natural result of simply replacing P by @. It is
questionable whether handling the equivalence relation in nonclausal resolution without further
extension is worthwhile in comparison with the representational advantages of negation normal
form used in [1,2]. Another difficulty with the equivalence relation is that it sometimes needs
to be removed during Skolemization. [9] provides extensions to nonclausal resolution that defer

Skolemization and permit equivalence relations to be retained longer.

III CONNECTION GRAPHS

Connection-graph resolution was introduced in [7]. It has the following advantages:

» The connection-graph refinement is quite restrictive. Many resolution operations per-

mitted by other resolution procedures are not permitted by connection-graph resolution.

e The links associated with each wff function partially as indexing of the wifs. Effort is

not wasted in the theorem prover examining the entire set of wils for wils that can be



resolved against newly derived wifs.

e Links can be traversed by a graph-searching algorithm whereby each link traversal
denotes a resolution operation. This can be done to plan a deduction without actually
constructing it. This graph searching may resemble the searching performed for deduc-

tion in knowledge representation languages.

Connection-graph resolution is extended in a natural way to use the nonclausal resolu-

tion inference ruie.

A connection graph is a set of wifs and a set of links that connect atoms occurring
with positive polarity in one wff and negative polarity in the same or another wff. Performing
the nonclausal resolution operation indicated by the link results in the production of a new
connection graph with the resolved upon link eliminated and the nonclausal resolvent added.
Roughly speaking, atoms of the nonclausal resolvent are linked only to atoms to which atoms

of the parent wils were linked.
Definition 2. Let $ be a set of ground wifs. Let L be

{{(C,A,B)| A, B €S, atom C occura positively in A and negatively in 8 }.
Then (§, L) is the full connection graph for §.

Definition 3. Let § be a set of ground wils and L be its connection graph. Let { = (C, 4, 8}
be an element of L and C be the nonclausal resolvent A(C' — F)V 8(C « T). Let S’ be
SU{C}. Let L' be
L—-{¢}
U{(E,C, D) | atom E occurs positively in C and (E, A, D} € L or (E,B,D} € L }
U{(E,D,C) | atom E occura negatively in C and (E,D, A} € L or (E,D,B} € L}

U{(E,C,C} | atom E occurs positively and negatively in C and
(E,A,A)e L,(E,B,B)e L,(E,A,B}e L,or(E,B,A)EL)}.

Then the connection graph (5°, L’} is derived from (S, L} by ground nonclausal connection-

graph resolution.



A nonclausal connection-graph resolution refutation of an input set of wils is a deriva-
tion of a set of wils including F by nonclausal cornection-graph resolution from the full con-

nection graph of the input set of wils.

Ground nonclausal connection-graph resolution can be extended to the nonground
case by including in the links the unifier of the atoms they connect, keeping wifls renamed
apart, and by including links between variants of the same wif (to allow a wfl to directly
or indirectly resolve against a variant of itself). Factorization must also be included. Either
factors with appropriately inherited links must be added for each wff in the connection graph
or special factor links can be used with link inheritance rules for both resolve and factor links

after resolution and factorization operations.

The nonclausal connection-graph resolution procedure is sound and there is reason to
believe it is complete. However, it has not yet been proved to be complete, and the history
of proving completeness of connection-graph procedures for the simpler clausal case (see [2])

suggests it may be difficult.

One reason it is difficult to prove the completeness of the connection-graph procedure
is that the link inheritance rules exclude some links that would be present if the connection
graph were merely an encoding of all permitted resolution operations for ordinary resolution.
Exactly which links are excluded depends on the order in which resolution operations are
performed. The effect of connection-graph resolution is to impose the following restriction: if
a pair of atoms in a pair of wils is resolved upon, atoms derived (in later resolution operations)
from the resolved-on atoms cannot be resolved against each other. For example, if a set of
wils includes PV @ and P V —@, these two wils can be resolved upon P and @—resulting in
tautologies that are discarded; after that, neither wff can be resolved with an atom descended

from the other, even though doing so would not result in a tautology.

Connection-graph resolution procedures can possibly be incomplete by succeeding in
finding refutations when links are resolved upon in some orders, but not others. For example,
consider the combination of linear resolution and connection-graph resolution for clauses. Each

is complete, but the combination is not. If linear connection-graph resolution is applied to
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{PV-Q,-PV-Q,Q} with Q as top clause, depth-first search will find a refutation, but
breadth-first search will not. This contrasts with the usual situation in which breadth-first
search is “safe”, always guaranteed to find a refutatién if there is one. To see that it fails in
this case, observe that after P and —P are generated on the first level of breadth-first search,
@ and -Q have no links—and thus none of the three input clauses can be further resolved
upon to lead to a refutation. P and —P are linked, but cannot be resolved without violating

the linear-resolution restriction.

A set of assertions in a cornection graph can to some extent be regarded and treated

as a semantic network—more so than the same set of assertions without the connection graph.

For example, the full conrection graph for
elephant(Clyde)
elephant(z) O mammal(z)
elephant(y) O color(y, gray)
mammal(z) D animal(z)

would contain links between the following pairs of atoms
£). (elephant(Clyde), elephant(z))
l2. (elcphant(Clyde), elephant(y))
£3. (mammal(z), mammal(z)).

Answers to such queries as “What color is Clyde?” and “Is Clyde ap animal?” can be found
by graph searching with minimal analysis of the assertions, by traversing the links in the
connection graph. Such searching can be made more efficient by labeling the links (e.g., 1sa for
£, and £z, hascolor for £5). The semantic content of the set of assertions is still conveyed by
the assertions themselves, but control information is provided to a graph-searching procedure

by the link labels.

Similar comments could be made regarding any logical representation. However, the
use of a connection graph in which all permissible remaining resolution operations are encoded
in explicit links can yield greater efficiency by eliminating traversal of multiple paths to the

same goal. For example, suppose £3 is resolved upon, resulting in the added assertion

elephant(w) D animal(w)
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and the added link
£y. (elephant(Clyde), elephant(w)).

The link £3 is deleted. There is still only one path or proof that Clyde is an animal, since the

absence of £3 blocks the path or proof elephant(Clyde) — mammal(Clyde) — animal(Clyde).

Graph searching in the connection graph to determine taxonomic relations quickly is
a simple illustration of the more general notion, extensively explored in {1,13], of using graph
~ searching to determine the existence of refutations. The ideas and techniques developed there
are applicable to nonclausal connection-graph resolution. Connection-graph resolution appears

to offer the following advantages over these other schemes:

e Although graph searching can be done in the connection-graph resolution procedure,
[1,13] do not allow for the actual formation of resolvents. If their techniques for graph
search were adopted as a device for planning or quick refutation, connection-graph

resolution could be regarded as a superset of these other methods.

* The actual formation of resolvents and the resulting change in the connection graph are
useful for retaining information during a refutation, as well as for conveying information
(about usage of wils, etc.) from one refutation or assertion to the next. (Here it is
assumed that the theorem prover is being used with an assertional database to which
queries are posed and assertions occasionally added and deleted, as opposed to the usual
situation in theorem proving in which there is no persistent assertional database, all

axioms being presented anew for each proof.)

¢ Connection-graph resolution provides a convenient, albeit unsophisticated, means of
interleaving matching complementary literals and adding new instances of assertions (if
more than one ground instance of a wif is required), as compared with the separate

processes of searching for a mating, and quantifier duplication if the search fails [1].

Of course, the argument in favor of performing only graph searching as in [1,13] is
that forming resolvents is expensive compared to traversing links, and the cost of creating and

storing inherited links may be high.



A good system will probably have a mixture of resolution and graph searching, as in
[4] for clausal connection-graph resolution. Graph searching is used in that system for look-
ahead and to determine if a refutation exists within a certain number of steps. Simple graph
searching is used (e.g., not looking for refutations in which wfls occur more than once), with

the full complexity and completeness of connection-graph resolution in the background.

One problem with graph searching to find refutations is in assessing the effectiveness
of the procedure. In ordinary resolution thecrem proving, effectiveness can be evaluated in
part by examining the number of clauses generated, retained, used in the refutation, and so
forth. [4] states “Within this frame of reference it would be easy to design the ‘perfect’ proof
procedure: the supervisor and the look-ahead heuristics would find the proof and then guide
the system without any unnecessafy steps through the search space.” The amount of time used
is a good measure for such a program, but should not be used to compare programs as there
may be differences in the machines the programs run on and in the efficiency of the programs
themselves (as opposed to the algorithms). In general, as [4] states, a measure incorporating
both total time and space will be required, adding the further complication of evaluating time-

space trade-offs.

IV CONTROL

A link scheduler is used to specify a refutation search strategy. When an assertion
is added by the user, it is linked in the connection graph to all previous assertions. When a
resolvent is added, it is linked to the other assertions according to the link inheritance rules.

Al such added links are examined by the link scheduler. Three outcomes are possible:

e The link is deleted. For example, analysis may show that resolving on the link would
create a tautology or pure wif that could not be used in a refutation, whereupon the

link can be deleted.

e The link is retained, but not scheduled. Thus the link can be inherited, but can-

not be resolved upon {though its descendants might be). This is done when combin-
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ing connection-graph resolution with other refinements of resolution, such as ordering

restrictions and the special logical-connective restrictions described below.

o The link is scheduled. It is given a numerical score and placed in the link schedule. The
theorem prover operates by repeatedly resolving on the best scored link in the schedule,
creating the resolvent, and scheduling the added links.

Scheduling of the links is done after all the new links have been added, so that the

link scheduler can act on such important facts as the number of links attached to an atom.

Special logical connectives can be used to impose restrictions on the use of particular
assertions. As in [10], the following connectives denote the following procedural interpretations

of A D B:
o A — B. If literal A is ever asserted, assert 8 (forward chaining).

B «— A. To prove literal B, try to prove 4 (backward chaining). Since a refutation

procedure i3 being used, this is interpreted a3 “permit the resolution, on literal B,

between A O B and any wil having support.”
e A = B. If literal 4 is ever asserted, also assert B and, to prove -4, try to prove —58.
s B = A. To prove literal B, try to prove A and, if ~8 is ever asserted, also assert - 4.

A O B and ~4 v B. Unrestricted and equivalent.

The use of both nonclausal resolution and these special logical connectives gives this
program some resemblance to natural deduction [3]. It represents an intermediate point between
clausal resolution and natural deduction, with advantages of each. It differs from natural
deduction, since, for example, a backward-chaining application of 4 O 8 to ¢ would result
in =4V C(8 «~ T) rather than C{B « A) {with perhaps only a single instance of B replaced,
requiring additional operations to replace the other occurrences). Tle latter expression may
be more natural, but the former is more concise because all occurrences of B are eliminated
and only a single instance of A is added. Heuristic search is used in a manner similar to the

way it is employed in a clausal system [14] and in a natural-deduction system [15].
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V STATUS AND FUTURE PLANS

The theorem-proving program is implemented as a 4000 line INTERLISP program and
is presently being used as the deduction component of the MICROKLAUS natural-language-
understanding system. Natural-language assertions and queries are translated by the DIALOGIC

_ system [6] into logical form {11]. This logical form is further translated into predicate calculus
for input to the theorem prover. The allowance for predicate variables extends the program
slightly beyond ordinary first-order predicate calculus., Future work will expand the range of
logical form handled, as not all logical forms that can be generated by DIALOGIC are presently
being translated; the range of logical form generated by DIALOGIC is also being expanded.

Besides the unification filtering provided by the connection graph, atoms in assertions
are indexed by predicate ‘symbol so as to speed the addition to the connection graph of
user input assertions when there is a large number of them. Wfls are also indexed by their
propositional structure and predicate symbols to speed checking for alphabetic-commutative
variants to be eliminated. More efficient indexing schemes will probably be tried and variant

elimination replaced by subsumption.

Factorization has not yet been implemented in the program. When two wifs are
resolved upon a pair of atoms, all atoms instantiated to be the same as the instantiated
\resolved-on atoms are replaced by F or T, but there is no effort to force additional atoms, by
further instantiation, to be the same as the resolved-on atoms. Thus, only “obvious” factors

are used. This is incomplete, but eflective. Factor links will be added for completeness.

So far, only fairly simple evaluation functions have been used in the search control
process. They are similar to those used in [14], being weighted sums of the deduction depth
of the wif (a measure of the effort required to derive the wif) and the number of atoms in
the wil (a measure of the additional eflort that will be needed to complete a refutation using
the wfl). Performance is generally superior to that in [14]. In ordering restrictions, atoms are
also evaluated according to how many links are connected to them, so that atoms with fewer
links can be resoived upon preferentially. Not only is the immediate branching factor reduced,

but there is also the prospect that the other atoms with more links will be instantiated and
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inherit fewer links when the resolution operation is performed. Interestingly, as was also noted

in [14], there can be negative interactions among individually good ideas on search control.

For example, a strong length-preference strategy and the strategy of resolving on an atom

with the fewest links are somewhat inconsistent. When there are many assertions about some

predicate—some short and specific, others long and general—the atom with the fewest links is

likely to be linked only to long and general assertions. Resolving on it thus may result in long

resolvents that would be given low preference by a strong-length preference strategy. More

work will be done on developing good evaluation functions. The most important extension of

the program will be further development of connection-graph searching—both to provide input

to evaluation functions and to perform entire deductions without creating any resolvents,
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